US009323598B2

a2 United States Patent

(10) Patent No.: US 9,323,598 B2

Surazski et al. (45) Date of Patent: *Apr. 26, 2016
(54) BUG CLEARING HOUSE (56) References Cited
(71) Applicant: Google Inc., Mountain View, CA (US) U.S. PATENT DOCUMENTS
(72) Inventors: Jacek Surazski, Cracow (PL); Jason B. 6,725,399 B1* 4/2004 Bowman ... G061;114 1//3386?3
Parks, Austin, TX (US); Dawid Duda, '
Zielonki (PL) 6,978,441 B2 12/2005 Atwood et al.
(Continued)
(73) Assignee: Google Inc., Mountain View, CA (US)
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 g %8??;‘2‘2532 S; %8(1)%
US.C.154(b) by 0 days. WO 2009/148781 12/2009
Thl.S patent is subject to a terminal dis- OTHER PUBLICATIONS
claimer.
] Ko et al., Design, discussion, and dissent in open bug reports, Feb.
(21) Appl. No.: 14/549,131 2011, 8 pages.*
(22) Filed: Nov. 20, 2014 (Continued)
(65) Prior Publication Data Primary Examiner — Thuy Dao
US 2015/0234699 A1 Aug. 20, 2015 (74) Attorney, Agent, or Firm — Fish & Richardson P.C.
Related U.S. Application Data (57) ABSTRACT
(63) Continuation of application No. 13/111,791, filed on A computer-implemented system for managing software
May 19, 2011, now Pat. No. 8,898,637. problem reports includes a registration sub-system to register
(60) Provisional application No. 61/346,453, filed on May software developers from multiple different developer orga-
19, 2010. nizations; an application store that makes a plurality of appli-
cations from a plurality of application developers available
(51) Int.CL for acquisition by members of the public; an application bug
GOG6F 9/44 (2006.01) tracker programmed to receive reports of problems with
GO6F 11/67 (2006.01) applications distributed using the application store, to receive
G06Q 10/10 (2012.01) data regarding the problems, and to associate the data with a
(52) US.CL particular application or developer of the particular applica-
CPC ., GO6F 11/0775 (2013.01); GOGF 8/71 tion; and a report generator to produce one or more problem
(2013.01); GO6F 11/0748 (2013.01); GO6Q reports for a developer that has provided one or more appli-
10/10 (2013.01) cations, the problem reports including information about the
(58) Field of Classification Search data regarding the problems relating to particular applications

CPC ... GO6F 11/3688; GOG6F 11/3664; GOGF 8/20;
GOG6F 8/71; GO6F 11/0775; GO6Q 10/06
See application file for complete search history.

submitted to the application store by the developer.

20 Claims, 10 Drawing Sheets

@ Application | Applicatior Applicatior

Apgp!;clat}i;o l;A_p[:)hcatnor{J Applicatior] =

Application Developer Mobile Application Markefi22 Mobile Device
120 124

i} Application

Applicatior]

App‘i'icét'io"r

i Bug #1 Bug #2 Bug #3

[epon

fLReport Report ‘ i Report !

Mobile Device Mobile Device
126 128

Appllcatlcl)gzDeveloper

Feedback Server
ﬂ 130

Bug#2 || Bug#1.

Report Report
Report Report

134 Mobile Application Market

US 9,323,598 B2
Page 2

(56)

7,234,131
7,299,455
7,401,321

7,458,064
7,509,626
7,512,933
7,603,653
7,657,872
7,743,360
7,870,535
8,381,189
8,448,138
8,694,969
8,826,222

8,949,770

2002/0049962
2006/0015840
2007/0011659
2007/0074149
2007/0168343
2008/0141221
2008/0172583
2008/0263398
2009/0006883
2010/0205274
2010/0325602
2011/0252405
2012/0167053
2012/0266023

2013/0104105

2014/0013307
2015/0019564

References Cited

U.S. PATENT DOCUMENTS

Bl
B2
B2 *

B2
Bl
Bl
B2

6/2007
11/2007
7/2008

11/2008
3/2009
3/2009

10/2009
2/2010
6/2010
1/2011
2/2013
5/2013
4/2014
9/2014

2/2015

4/2002
1/2006
1/2007
3/2007
7/2007
6/2008
7/2008
10/2008
1/2009
8/2010
12/2010
10/2011
6/2012
10/2012

4/2013

1/2014
1/2015

Speyrer et al.

Anderson et al.

Sit GO6F 11/3664
714/E11.207

Potts et al.
Barnes et al.
Tortosa et al.
Sundararajan et al.
Kelbaugh et al.
Venolia
Rippert et al.
Surazski et al.
Chang et al.
Bernardini et al.
Bak .o GO6F 8/71
717/101
GOG6F 8/10
717/101
Kelbaugh et al.
Marvel et al.
Venolia
Ognev et al.
Bestetal.cccooeevvnvvnrnnne 707/5
Benesovska et al.
Mabhajan et al.
Mori et al.
Zhang et al.
Gharabally et al. 709/217
Kraft et al.
Meirman et al.
Marum et al.
Brown GOG6F 11/3684
714/32
GOG6F 11/3684
717/124

Hansson
Higginson GOGF 17/3053

707/748

OTHER PUBLICATIONS

Constantinides et al., Online design bug detection: RTL analysis,
flexible mechanisms, and evaluation, Nov. 2008, 12 pages.™
Authorized Officer J.T. Kim. International Search Report and Written
Opinion in international application No. PCT/US2011/037210,
dated Dec. 7, 2011, 10 pages.

Avnon et al., Fit and Finish using a bug tracking system: challenges
and recommendations, Apr. 2010,4 pages, <http://delivery.acm.org/1
0.1145/1760000/1754219/p4717 -avnon.pdf>.

Bertram et al., Communication, collaboration, and bugs: the social
nature of issue tracking in small, collocated teams, Feb. 2010, 10
pages.

Bortis et al., Teambugs: a collaborative bug tracking tool, May 2011,
3 pages.

Bray. Tim. “Android Application Error Reports”, May 21, 2010
[Retrieved on May 24, 2010], retrieved from the Internet
<URL:http://android-developers.blogspot.com/2010/05/google-
feedback-for-android html>.

H. Delugach, An evaluation of the pragmatics of web-based bug
tracking tools, Oct. 2007, 8 pages, <http://delivery.acm.org/1 0.1145/
1330000/1324243/p49-delugach.pdf>.

Hangal et al., Tracking down software bugs using automatic anomaly
detection, May 2002, 11 pages.

International Preliminary Report on Patentability in International
Application No. PCT/US2011/037210, dated Nov. 20, 2012, 7 pages.
Spacco et al., Tracking defect warnings across versions, May 2006, 4
pages.

Phil Keys, “Follow after Apple”, The Cutthroat Competition of
Application Stores for Mobile Devices, Nikkei Electronics, No.
1018, Nikkei Electronics, Japan, Nikkei BP, Inc., Nikkei Business
Publications, Inc., Nov. 27,2009, pp. 71 to 78, 18 pages (with English
translation).

Hidetake Iwata, An Analysis of Relationships between Bug Reports
and Modification Costs in Open Source Development, lecture notes/
software studies 31, basics of software engineering XII, Japan,
Kindai Kagaku Sha Co., Ltd, Nov. 30, 2005, pp. 43 to 48 (English
abstract).

Office Action issued in Japanese Application No. 2013-511363 on
Jun. 8, 2015, 9 pages (with English translation).

* cited by examiner

US 9,323,598 B2

Sheet 1 of 10

Apr. 26,2016

U.S. Patent

Vi Old

¢0l
Jajuan uonesijddy

Jauoday Eumm__oo
___ bn ___ bn
8l g 9ll d

labeuep mm_mww
prp 99V zir oY

Jauen J|uen

Jadojane(Jasn

g 801

US 9,323,598 B2

Sheet 2 of 10

Apr. 26,2016

U.S. Patent

19)e uoneolddy o[iIqoN FET

Hoday

Hoday

Hoday

Z# bng

0ct

JaAIag yoeqpas

cel

Lmao_m>momcmzmo__aa<

90IAa(JIGO

dl 9Old

gct 14
801A8(] B|IgON

~

~

o0Ina(SJIqON

-

fco_wmo__aaxx \

Joday Jodey

Jodey Hoday

Hoday hosonooaaman

c# bng z#bng || 1#bng
743

ZZnox el uoneolddy o|igoy

Lonesddy

uoneolddy

Loneolddy

US 9,323,598 B2

Sheet 3 of 10

Apr. 26,2016

U.S. Patent

Vz1z

U.S. Patent

Apr. 26,2016 Sheet 4 of 10

Receive Upload of Application by
Developer

=~

02

|

Make Application Available on
Marketplace

1
(o]
E5N

|

Deliver Application to Buyers

oM
|-
(o3}

|

Receive Alerts About Application
From Mobile Devices

(V]
oo

0

|

Format and Save Information About
Alerts

1o
L]

1

!

Format and Deliver Repori(s) to
Application Developer

(€3]
s
(]

FIG. 3

US 9,323,598 B2

U.S. Patent

US 9,323,598 B2

Record Error

Event
424

Start Session
428

Apr. 26, 2016 Sheet 5 of 10

I] ,

| i !

Develop Application : : :

4021 | | |

! | !

¥ | | |

I | !

I] |

Register/Login | X Start Session :

404| | ! 406 |

‘ l i |

!] I

Upload Applicati ‘ | '

oad Application I b . !

P and Provide ! TP Register |

I i H H |

Necessary Meta | | Application 0]

Dat !] —

9 08| | i .

I } !

I ! Make Application | 1

! ! Available for !

[] |

[{ Download 4771 |

I] e

! | !

I | !

: Register/Login "";"" Start Session :

I] |

i 414 416 |

I } !

I *] !

I Receive User] |

' Command to ! !

t b Check User !

! Download ™1 Credentials and | !

| Application 1 |

| PP 418 1 Provide |

! ! Application !

| Execute Application |4 420 !

| and Generate Error 1 |

I } |
| Event 427 : »

[] !

[| |

| i |

!] !

} | |

Register/Login |] T

26| | } :

— * |

I] !

I } !

I] !

Request Report (s) : : :
430 T P

I | |

! t |

G 1 "

Display Report (s) : : :

4321 1] |

I] !

I } i

I } !

Developer User App Store
Server(s)

FIG. 4

Serve Report(s)
434

Bug Server(s)

US 9,323,598 B2

Sheet 6 of 10

Apr. 26,2016

U.S. Patent

dg "old

puas MoIABIH

Aonog Aoeang

Wwe|qoid m.E mmocmm_m_
isyeg 01 Jadojans(s,uoneoiddy
SIY1 yum eleq WwieisAs aleys

(A ereq wiaysAg apnjouj

ASeAlld |

(reuondo) uopduoseq

AOEegpoo4 |

ddeyseiosyaoel-woo| >

yoeqpaad poday| &

Wd 0L D MG @ VE X[

VG 'Old

© el ER N

toaow_ 980} 92404

‘uieby Al aseald Alpeadxaun
paddoig sey (zloyoune)
‘ploJpue WO $58901d)

Jayoune uoneslddy auyy

iAuog i/ k

Nd€0:1 O M B & VE K[[5d

US 9,323,598 B2

Sheet 7 of 10

Apr. 26,2016

U.S. Patent

V9 Old

AOI10d AOVAIMd - FOIAH4S 40 SIWHHL 79009 - INFNFFHOV NOILNGI-HLSIA 4340 TIAI0 LIMEVIN AIOEANY - 319009 010¢

C) SIHOdAd 0 ¢) S1¥0d34 0
MFIM/SLHOdIH 0 aioo MFIWSLH0d3H 0 aoo
. P
C D SIH0d3Y 120« > S1¥0d3d €¢¢ ﬁ
MFIWSLHOd3Y 1€ MAN L¢ NFIWSLHOdTY 61 MaN¥ o
SIHSVYHOI S3Z3344d TYIHONNVTAIOYANY'INOD
MovEa334 ¥4asn
< 4INOH
183 JelW) =
CloeCUD @

LNONSIS|WOJTIOYANY |[dT3H|INOH W0 IO ®HId0T13AIA LINIYIN-OIMINTD

US 9,323,598 B2

Sheet 8 of 10

Apr. 26,2016

U.S. Patent

g9 old

AOI10d AQVAIMd -FITAYSS 0 SIWYAL 319009 tNFNF389Y NOIINAEISIA 9340 19A30 IEVIN QIOFaNY - 319009 0102
<JXIANEH0 L

() TYNYZLXIdOHANO IOVSHHOM NI

IS 038 0 SL40d3H €l NOIrEyeioscraicR
o N ()AdODAYHYY' WILSAS NI A3N
—— S1HO4TY 6 5&&%&&% MIN
" shoa ommmﬁgoomom_>:w\w%%mmo%mw,__u%:@ an
TEaWshOd3ie SLodRE czo__é%wwwm%w%wwﬁzﬂ Ml
EEENTIVGNENTA S1H0dH /) % MIN
—— S 1O %9_Iomzizmmézmm;ﬂmw_ww%mw%mmsom/w_,ow_w._ﬂ" an
I EETORENT S1H0d3H € EN_%E% M3N
T EIWeINOdwy SLdOd3 Gl cﬂ% M3N
N SINOAIY S oz:m.or%E%Em5<o,_$_moﬂw,__m_wwmﬁw?ﬁ%\u:ﬂ MIN |
TXANE0) ZYIHONNYTAIOHANY'INOD NI SHOHYHI HSVHD
< ZYFHONNYTAIONANY OO <TWOH
WAHEDE

LNO NOISIFOTTIOIANY [dTIH| IWOH WOD TIYWODYIJOTIAIA LINEYINOIYINID

US 9,323,598 B2

Sheet 9 of 10

Apr. 26,2016

U.S. Patent

29 9Old

(QOHLIW JALLYNINIVW LYVLSTAILYN'WILSAS MIATYA LY

(929:VAVI LINIFLODAZINIVIW LINIZLODAZ SO TYNHILNI QIOHANY WOD 1Y

(898" YAVI LINIFLODAZINNY I TT¥OSOHVANYAOHLIWSLINIALODAZ SO TYNYILNI QIOMANY WOD LY
(1Z6:VAVI"QOH LIW)IMOANIGOHLIN LOTT4IHONYT YAV LY

(QOHLIW FAILYN)IAILYNINOANI GOHLIN LOFT4TH ONYTYAVF 1Y

(G097 YAV QYIHHLALIALLOYINIVIN QYIUHLALIAILOY ddY QIOYANY LY

(€21 ' VAVIM43d00T)d00THId00T SO AIOHANY 1Y

(66:VAYI Y3 1ANYH)ZIOVSSIWHOLYSIA YT TANYH SO'AIONANY LY

(8y: YAV YIIANYHATEYIA30)FOVSSINTTANYH TdNISHITANYHATHYIAAAQ ZHIHONNY T AIOYANY INOD LY

(801 1WAV TICOWYIHONNY INNY 04 $AYIHH LYIOVYOT$Y3AY0T$TIAOWEIHONNY T ZHIHINNY T IONANY OO LY
NOILdFOX3dFINIOd TINN ONYTVAYTF

C

NEENISROEEREA SLHOdI S Nd 91:65:2) 0102 22 HdY ZZA
SOVAL YOS |

' N\

SIIWSIIOITICL SIHOdINSL INO SNXaN

SWHO041Yd)

.

410 SY YuvIN S

-

(ONNY 01$aVIHHLYIAYOT$EIAYOTSTIAOWEIHONNYT AOHLIW 0UNOS
NOILdIOXIHILNIOATINN'ONYTVAYE SSY1D NOILdIOX3

HSVYO
CYIHONNYT AIOHANV'NOO NI NOILLdIIXIHALNIOdTINN
< SHOHYT HSYHO < CHIHONNVTAIOHANY WO < JNOH

1@ew @

CloeCUD

1NO NOIS|NOTTIOYANY [dTIH|FNOH WO IVADDHIJ0TIAIA 1IHYVIN ORYANTD

U.S. Patent Apr. 26, 2016 Sheet 10 of 10 US 9,323,598 B2

700 z

716

US 9,323,598 B2

1
BUG CLEARING HOUSE

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims priority to U.S. Provisional Appli-
cation Ser. No. 61/346,453, filed on May 19, 2010, entitled
“Bug Clearing House,” the entire contents of which are
hereby incorporated by reference.

TECHNICAL FIELD

This document relates to management and distribution of
information about problems with software applications.

BACKGROUND

Software development is a difficult business. A prospective
software developer must first train himself or herself in archi-
tecting and programming software. He or she must then stay
up-to-date on ever-changing programming languages and
technologies. And he or she must have an idea. The developer
then needs to figure out how to implement the idea through
programming within the resources that are available on the
target computing platform, and within their own time and
financial constraints. In addition, he or she needs to have
people test the program in different settings, and make cor-
rections to fix bugs in the program. The developer must then
figure out how to price and distribute the software and get
people interested in it.

Advanced programming environments helps to resolve
some ofthese problems—i.e., they make the organization and
typing of code more automated. In addition, the recent advent
of on-line app stores for wireless computing devices such as
smart phones and netbooks has made it much easier for small
developers to market and sell software. Both of these devel-
opments have made life better for software developers and for
the people who buy their software. Still, the life of a software
developer is a hard one. For example, it can still be difficult to
obtain feedback from users of a program and to analyze that
feedback in an effective manner. For example, many devel-
opers provide an email link with an application by which
customers can provide feedback.

SUMMARY

This document discusses systems and techniques for man-
aging reports of problems, or bugs, for software developers,
and particularly for software developers who sell and distrib-
ute applications through a third-party on-line app store for
users of wireless mobile computing devices such as smart
phones. For example, a developer may be an individual pro-
grammer who is registered with a system that provides a
public app store, so that the developer may upload applica-
tions to the app store for the distribution of the applications to
members of the public who are registered to make purchases
from the app store—all in a familiar and well-known manner.
The particular software applications, and/or an operating sys-
tem that executes on one or more mobile computing devices,
may be programmed to gather information when there is a
problem, or bug (e.g., the application crashes or freezes,
consumes an excessive amount of power, or a user of a device
manually reports a problem or an idea for improving the
application), and may transmit data about the problem to a
reporting sub-system that is associated with the app store and
operated by the same organization that operates the app store.

10

15

30

35

40

45

50

2

The reporting sub-system may correlate each such incom-
ing bug reporting submission (whether generated automati-
cally by a device or manually by a user of the device) with a
computer application to which the problem was directed (e.g.,
an application that was open and/or the focus of an operating
system when a freeze or crash occurred), and may store
information that characterizes the problem. The information
may be stored in a manner so that it is associated with the
application, and by extension, with a developer of the appli-
cation. When the developer (which may be the individual who
provided the software to the app store, or an agent of that
individual) next logs onto the system, the developer may pull
up reports regarding software applications they have
uploaded, where the reports aggregate all of the data for all the
reported problems for each such software application, and
also show the nature and extent of problems with the appli-
cations.

Such reports may have certain information removed from
them by the reporting sub-system, such as to maintain privacy
for users whose mobile computing devices experienced the
problems and generated the corresponding data. The level of
information that is provided by the sub-system to a developer
can also depend on the level of trust that the sub-system has
with the developer. Also, users may be notified regarding the
level of information that may be shared, and may choose to
allow or disallow such use of the information.

The reports may take various familiar forms, such as sum-
mary reports that show the frequency of occurrence of prob-
lems with an application or applications, error reports that list
all problems of a certain type with an application and provide
data that describes the problems (e.g., in what portion of the
code the problem occurred), and stack traces that show infor-
mation about the status of each computing device when the
problem occurred on the device.

In addition, the system may generate data across multiple
applications that is useful more broadly for the third-party
provider. For example, where the organization that operates
the app store also provides the operating system for the
mobile devices that access the app store, problem data for
multiple applications can be “rolled up” in various manners to
create aggregate data and resulting reports to determine
whether there are problems with the operating system. For
example, if such data indicates that multiple different appli-
cations are experiencing freezes when accessing a particular
operating system service or interface, the third-party provider
may be alerted that there could be a problem with the code for
the service or interface.

Such systems and techniques may, in certain implementa-
tions, provide one or more advantages. For example, devel-
opers may be provided with diagnostic capabilities that may
otherwise be available only to sophisticated companies that
have set up their own bug tracking systems, merely by using
a particular development environment. Users of devices may
receive improved applications from various developers, and
may be allowed to report bugs in a convenient manner that is
consistent across multiple different applications from mul-
tiple different developers. And a provider of a platform, such
as an operating system and/or an associated app store, may be
able to improve the desirability of its platform to developers
and users of devices.

In one implementation, a computer-implemented system
for managing software problem reports is discussed. The
system comprises a registration sub-system to register soft-
ware developers from multiple different developer organiza-
tions. The system further includes an application store that
makes a plurality of applications from a plurality of applica-
tion developers available for acquisition by members of the

US 9,323,598 B2

3

public. The system also includes an application bug tracker
programmed to receive reports of problems with applications
distributed using the application store, to receive data regard-
ing the problems, and to associate the data with a particular
application or developer of the particular application. Addi-
tionally, the system includes a report generator to produce one
or more problem reports for a developer thathas provided one
or more applications, the problem reports including informa-
tion about the data regarding the problems relating to particu-
lar applications submitted to the application store by the
developer.

Implementations can include any, all, or none of the fol-
lowing features. The reports of problems can include prob-
lems selected from the group consisting of application
crashes, application freezes, excessive battery usage, and
manually-invoked computing device user comments. The
system can also include a bug analyzer programmed to ana-
lyze reports of problems across multiple applications to iden-
tify whether the reports of problems indicate problems with
particular computing device models or a computer operating
system. The bug analyzer further can identify that reports of
problems indicate problems with particular computing device
models or a computer operating system by identifying statis-
tically higher reporting frequencies with a particular device
model or operating system version. The system can be
arranged to limit information provided to the developer based
on a trust level that identifies how much information about
users of the particular application that the developer is autho-
rized to obtain. The system can additionally be programmed
to limit information provided to the developer based on
whether the developer is a developer of a core application
from an organization that manages an operating system for a
device on which a particular problem occurred.

Also, the system can be arranged to group information
about problems according to the type of problem. The system
can be arranged to provide information indicating a device
type and operating system identifier for a device on which a
particular problem occurred. The system can further include
a developer upload interface that accepts uploads of applica-
tions from developers and correlates each application with a
developer account through which the application was
uploaded. The system can be programmed to present to a
developer, bugs sorted by a severity level that is determined
from a rate at which different bugs for the particular devel-
oper.

In one aspect, a computer-implemented method for man-
aging software problems includes receiving, at a central
server system, a plurality of software application problem
reports from a plurality of different computing devices that
are remote from the central server system. The system further
includes associating particular ones of the problem reports
with particular applications provided by particular software
developers. Additionally, the system includes receiving iden-
tification information from one developer of the particular
developers. The system also includes, in response to receiving
the identification information, providing the one of the par-
ticular developers with information describing problem
reports for the particular applications managed with the cen-
tral server system by the one developer.

Implementations can include any, all, or none of the fol-
lowing features. The software application problem reports
can include reports relating to freezes, crashes, and user-
generated comments. Additionally the software application
problem reports can include trace data for a device that gen-
erated a particular problem report, and information about
configuration of the device. The system can further include
receiving software application uploads from a plurality of

30

40

45

4

software developers, correlating each application to a devel-
oper account for the application, and correlating.

The details of one or more embodiments are set forth in the
accompanying drawings and the description below. Other
features and advantages will be apparent from the description
and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIG. 1A is a conceptual diagram of an example system for
distributing software from multiple developers and collecting
information about the operation of the software.

FIG. 1B is a flow diagram that shows operations for pro-
viding feedback on the operation of software applications.

FIG. 2 is a schematic diagram of an example system for
tracking submissions from computing devices regarding the
operation of software applications on those devices.

FIG. 3 is a flowchart of an example process for managing
software problem reports.

FIG. 4 is a swim lane diagram of an example process for
managing submissions of problems with software from mul-
tiple developers.

FIGS. 5A and 5B are example screen shots of a mobile
computing device experiencing operational problems with a
software application.

FIG. 6A is an example screenshot showing summary sta-
tistics of operational problems for an application.

FIG. 6B is an example screenshot showing a summary
report of operational problems for a number of different
applications or code files.

FIG. 6C is an example screenshot of a detailed report about
a particular failure of an application.

FIG. 7 shows an example of a generic computer device and
a generic mobile computer device that may be used with the
techniques described in this paper.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

This document discusses various systems and techniques
that may be used to provide feedback on the operation of
software applications. In particular examples, a distributed
group of software developers who are independent of each
other (e.g., do not work for the same company, operate from
the same domain, or share a common software development
system) may upload their software applications to an app
store from which various users of computing devices may
review and download the applications, frequently paying to
purchase or license the applications (where the respective
developer will receive a share of the payment). An operating
system on the devices may perform ordinary error handling of
problems on the device, including by keeping stack traces and
reporting such information to a central server system when
there is a problem, or bug, with a device. Such information is
commonly used by trained individuals in an attempt to diag-
nose the source of the problem so that remedial measures may
be taken and the relevant software code may be corrected and
updated.

In the examples discussed here, a portion of the data sub-
mitted from the various computing devices may also be made
available for review by the developer who submitted the code
that caused the problem or was active when the problem
occurred. Such an operation may occur by the operating
system identifying the relevant application or applications
when a problem occurs, and submitting, to a central server
system, information about the problem along with informa-

US 9,323,598 B2

5

tion that identifies the application or applications. The central
server system may then store the data in association with a
software application identifier, and such an identifier may be
further used to identify a developer of the application. When
such developer (which may be a wholly different individual
or organization than the operator of the app store or operating
system) logs into the system and asks for a report of problems
with his or her code, the system may query a database where
the problem data is stored, to locate all data for the particular
developer, and may generate one or more reports that filter
and group the data in various ways. As one example, person-
ally identifiable information may be removed from the data
that is provided for the report or it may be obscured. Also, the
data may be sorted according to each application so that a
developer can quickly obtain an understanding about the rela-
tive operation of each of their applications if they have many
such applications.

FIG. 1A is a conceptual diagram showing a system 100 for
distributing software from multiple developers and collecting
information about the operation of the software. In general,
the system 100 includes a central server system that sits
between a group of developers and a group of users (where, of
course, certain of the developers may also be users, and vice-
versa). The central server system receives software code
uploads from developers, provides code downloads to users,
receives error or problem data from the users, and filters and
organizes such data for presentation to the developers.

Referring now more specifically to the figure, the central
server system is shown here in the form of an application
center 102. The application center 102 includes physical and
logical components that make up a user center 108 and a
developer center 110. Such components may include, for
example, front ends or web servers that generate user inter-
faces for providing services to users and developers, respec-
tively. The user center 108 communicates with users 104, who
are each individuals in this example who have acquired a
mobile telephone, or app phone, that runs a particular soft-
ware operating system developed by the operator of the appli-
cation center 102. As part of the overall service provided with
the operating system, the operator makes the application cen-
ter 102 available for the review and purchase of software
applications for the mobile devices. Thus, for example, User
A (e.g., a teenager) may have downloaded a number of
videogames, while User B (e.g., a businesswoman) may have
downloaded various business applications that make use of
hosted cloud-based computing platforms, and User C (e.g., a
college student) may have downloaded an e-book reader
application (with a number of e-book textbooks) and a variety
of test preparation application, along with a mathematical
modeling application. In each situation, the relevant user may
launch each of their downloaded applications (which may
supplement applications that were shipped with their tele-
phone) and interact with them in familiar manners. They may
also revisit the application center 102 to locate and download
additional applications, as the need may arise.

From time to time, problems may occur on each of the
users’ 104 devices. For example, a user may be running a
number of applications simultaneously, and may create a
memory overflow condition that causes one of the applica-
tions to crash. Alternatively, an application may perform an
operation that causes it to lock up, so that a user will need to
close out a process in which the application is executing.
Alternatively, a user of the device may invoke a problem
submission process by which the user is allowed to fill out a
form to identify an error in an application or to suggest
improved features for the application. Each of these instances
and similar instances will be described collectively here as

30

35

40

45

55

6

bugs, in that they indicate a problem with the software appli-
cation for which feedback needs to be given to the developer
of the application (though it may be determined that the
problem s, inthe end, attributable to the operating system, the
device hardware, or another application).

As shown here, the applications may be acquired from the
app store 112, which may take a familiar form, such as a web
site from which applications submitted by third-parties (in
addition to some first-tier applications submitted by the
operator of the app store 112) can be displayed as part of a
web page on which are also displayed controls that, when
selected by a user, cause the particular selected application to
be supplied or downloaded to a device that is logged into the
user’s account with the system 100.

The user center 108 also includes a bug collector 116,
which includes components for automatically communicat-
ing with the instances of the applications that are distributed
to the users’ 104 devices either directly, or via operating
system components that report on the operation of the
instances of the applications. The bug collector may also
reformat the collected information for persistent storage,
such as by arranging the data in one or more databases that
include information such as the time and date of a submission,
the operating system and version on the device, the make and
model of the device, other applications that were executing on
the device when the problem event occurred, traces of recent
device activity, configuration data for the device, and other
similar information.

The other “side” of the application center 102 points
toward developers 106, which, like the users 104, may be very
large in number and geographically dispersed. In particular,
the users 104 and developers 106 may be spread across the
world and may access the application center 102 through
various networks, including the internet. As one example, the
system 100 may have thousands or tens of thousands of active
developers 106, and hundreds of thousands or millions (or
even hundreds of millions) of active users 104. The tech-
niques described here work particularly well in such systems
with large developer bases, as more user data may be supplied
to each developer, and developers in such systems are more
likely to be small, and not able to develop bug reporting
systems of their own.

The first main component in the developer center 110 is an
app manager 114. This component may be the flip-side of the
app store 112 for users. In particular, the app manager 114 can
include a web server and associated software that developers
may access, and interact with, in order to register themselves
as legitimate developer members of the system 100, and to
subsequently upload code for applications that they have
authored or for which they are managing the commercial
distribution. The app manager 114 may also provide a number
of additional services, which are generally well known, for
interacting with developers and allowing the developers to
conveniently manage their applications

The bug reporter 118 serves as the developer-side counter-
part to the bug collector 116, and completes the software
distribution and feedback cycle that starts at the developers
106, moves to the app manager 114 and the app store 112,
then to the users 104 who acquire and execute the applica-
tions, and back to the bug collector 116, bug reporter 118, and
developers 106, when a problem arises with the software
(though optimistic developers would refer to them as oppor-
tunities).

The bug reporter 118 in particular may provide for a web
server system to interact with the developers 106 and a report
generating facility to provide data about problems experi-
enced by the users’ 104 devices, with respect to applications

US 9,323,598 B2

7

that correspond to the respective developers. The reports may
be of a standard or custom format. Standard reports may be
developed by the operator of the application center 102
(which is shown as a single entity here, but could be operated
by multiple different organizations working in cooperation
with each other) and may be accessed and generated easily by
developers looking to see how their respective applications
are performing. Custom reports may be formed by each indi-
vidual developer, and may use graphical report development
tools that are well known. For example, a developer may
select particular fields of data they would like to see in their
reports, and may define the visual look of their reports. They
may also receive reports in the form of raw data (both in batch
form and in real time as reporting incidents occur among the
users 104), and may use their own facilities to manipulate and
report on the data. In addition, developers 106 may define
aggregate reports that they would like to see. For example, if
they have developed a suite of products (e.g., a business
productivity suite), they may want a report that includes a
section for parameters that are common to each component of
the suite, and separate sections for each of the components
and data that is specific to the particular component.

In these manners, the system 100 may provide developers
106 with extensive and helpfully formatted data concerning
bugs in their software that may need attention. A particular
developer may need to do nothing with respect to their soft-
ware in order to get certain data (other than providing a
mechanism by which an operating system can identify the
application when it is executing). In certain instances, devel-
opers may cause additional data to be reported, such as via an
API, but again, the developer would not need to implement a
full system for receiving bug submissions, for gathering data
on the client devices, and for otherwise implementing a full
application maintenance system. As a result, entry level
developers may gain the benefit of a program for improving
their applications, and consumers of the applications may in
turn benefit.

FIG. 1B is a flow diagram showing operations for provid-
ing feedback on the operation of software applications. In
general, a graphical timeline is shown here, starting in the
upper left corner and ending in the lower right, to explain an
example by which an application developer can make his or
her software application available to the public and may
receive feedback on the operation of the application, and may
thereby readily and quickly improve the application.

At operation 120, an application developer submits an
application to a mobile application market. The submission
may occur in a variety of appropriate manners, and the devel-
oper may provide the application with a self-signed certificate
that helps to legitimize the application and provide security in
the system. Operation 122 shows the presence of the appli-
cation in the mobile application market, along with three
other applications that may have been previously uploaded by
the same developer or by other developers. The “ownership”
of the applications may be maintained by correlating the
application to an account of the user who uploaded the appli-
cation, which would ordinarily be the actual developer or
someone working on behalf of the developer.

At operation 124, a user of a mobile computing device
(e.g., a smart phone or app phone) has visited the mobile
application market and has identified himself or herself, by
being logged into the system under his or her account. The
user has then selected the application that was uploaded at
operation 120, and the application has been installed and
made ready for execution by the user of the mobile device, in
a manner that is well known.

20

30

40

45

8

At operation 126, an icon of an explosion indicates the
occurrence of an error while the application is running on the
mobile device. The error may involve a crash or locking
situation, or could result from a user of the device manually
indicating an intent to provide feedback regarding the appli-
cation. Such an event may cause diagnostic information about
the event to be gathered on the device, such as by an operating
system component that executes on the device.

At operation 128, a report regarding the error is generated
onthe mobile device 128—an action that may occur under the
control of an operating system that managed the operation of
the mobile device and the various applications on the device.
For example, an operating system may be programmed to
recognize when a process ends unsuccessfully on the device,
and such an event may trigger a number of data gathering and
formatting operations by the operating system. For example,
the current contents of traces, stacks, resisters, or other enti-
ties may be determined, as may identifiers for all software
components that were executing on the device when the error
occurred. Such information may then be gathered together
into a predefined packet of information according to an
agreed-upon standard.

At operation 130, the report or submission is shown as it
may exist, at least conceptually, on a central server system
that is tasked with tracking and reporting on such reports. In
this example, the report has been classified as corresponding
to a particular bug for the application, where three different
bugs have been identified. Such classification may occur, for
example, by identifying which piece of code was executing
when the relevant error occurred, and providing an identifier
for that piece of code, so that the particular reports may be
joined together in producing a bug report. Identification of
bugs to be assigned to particular error submissions may be
performed in other ways also, including by manual classifi-
cation by a user of the bug tracing system. As shown here, two
other bugs have been identified, and there have been two and
three error submissions, respectively, for those bugs. Thus, in
this example, over a period of time, the initial application has
been identified as corresponding to eight different error sub-
missions.

Such information may be important for the developer of the
application to know. For example, one of the three bugs may
be important to the satisfaction of users of the application. If
the developer could quickly see the nature of such a bug, the
developer might be able to correct it quickly and supply a
“patch” for the code (and the patch may be pushed out auto-
matically to all users who have downloaded the application
(though they may be given the opportunity to reject such an
update).

At operations 132 and 134, such a developer has chosen to
see a report regarding all that developer’s bug submissions. In
this example, there are three bugs being tracked in the entire
system, but as shown in operation 134, only two of the bugs
were associated with the application from operation 120. The
mobile application market or similar sub-system, in this
example, may thus readily generate a report that shows infor-
mation about the particular errors and information that iden-
tifies to the developer the nature of the bug that is being
tracked by the system.

In certain instances, the data provided in the final report
may be substantially different than the data uploaded in the
submissions from the mobile devices. For example, person-
ally identifiable information may be stripped from the
uploaded data, so that developers cannot make particular
determinations about the users of devices. In one example,
only stack traces and similar information about the device at
the time of the crash may be provided but other information

US 9,323,598 B2

9

(e.g., information that might reflect the data the user was
manipulating when the problem occurred), will not be passed.
Also, certain levels of detail may be relevant to the central
system, but may be irrelevant to most developers, and may
thus be stripped out of the report at operation 134.

FIG. 2 is a schematic diagram of a system 200 for tracking
submissions from computing devices regarding the operation
of software applications on those devices. The system 200
may be used to carry out actions like those discussed with
respect to FIGS. 1A and 1B above. The system 200 is shown
for clarity in a highly simplified form, and in a particular
physical implementation may include a large number of addi-
tional components.

Referring now to the figure, there is shown a system 200 by
which various developers 212, shown by example using lap-
top and desktop computers, may submit applications to an
app server system 202, and may receive in return money and
feedback about the operation of their particular respective
submitted applications. Such applications may be purchased
or otherwise obtained by a variety ofusers 210 who are shown
here via wireless mobile devices that are capable of down-
loading and executing the applications.

The developers 212 and users 210 (or more technically,
their devices) generally do not communicate with each other
directly, but may instead communicate through the app server
system 202, using a network 204 such as the internet. Such
open communication may allow a wide variety of developer
types and users to make use of the system 200.

Particular components in the app server system 202 may
provide for functionality in deploying and tracking the use of
software applications by the system 200. For example, a
marketplace front end 214 may generate a user interface that
displays available applications to the users 210, and allows
the users to review, try, and download such applications. A
marketplace manager 218 may provide back end support for
the marketplace front end 214, such as by tracking purchases,
generating billing to the users 210 and remittance to the
developers 212, and other well-known functions of an app
store implementation.

A developer front end 216 may generate a user interface
that permits developers to register with the system 200,
upload applications, manage their applications (e.g., update,
add, and delete applications, and see how much money they
have made selling applications), and receive feedback on the
operation of their applications, as described above and below.
In providing such feedback, the front end 216 may access a
bug report generator 220, which may manage the uploading
of'data from mobile device on which bugs have occurred (e.g.,
as identified by crashes, freezes, and manual user reports).
For example, the bug report generator may be responsible for
receiving bug report data from the user devices, formatting it
appropriately for storage, such as in bug repository 222, and
then retrieve all or part of the stored data when a developer
requests to see reports regarding his particular applications.

The bug report generator 220 or the developer front end
216, or a combination of the two, may filter and format such
data appropriately for delivery to a developer. For example,
the two components can cooperate to generate a web page and
send the page to the developer in response to a developer’s
request for a report. Likewise, the data may be effectively
streamed to a developer who has asked for a syndicated feed
of data, so that the developer may see bug reports in real time
as they arrive at the system 200. Such real time reporting may
occur in various manners, such as SMS messages to the
developer, XML transfers (so that, e.g., the developer may use
analysis tools in its own system to organize the various bug
reports), and other such mechanisms.

20

40

45

10

Various data stores are also shown in the figure to exem-
plity forms of data that may be stored, accessed, and managed
by the system 200. For example, as noted above, a bug reposi-
tory may store information about bug reports that have come
up from users 210. The bug information may include diag-
nostic information that would allow a developer or other
technical person to infer (at least in part, and at least some of
the time, or in combination with other bug reports) what went
wrong when the bug event occurred. The bug repository may
also, in certain circumstances, include information that
should be accessible internally to the system 200, but not to
developers 212. Such information may be filtered in appro-
priate manners by, for example, bug report generator 220
and/or developer front end 216.

A credentials database 224 may store credentialing infor-
mation for the developers 212 and users 210. The credentials
may allow the various people to access relevant information
that is associated with their accounts, and to pay or receive
money for the purchasing and selling of applications through
the system 200. Also, credentials may be used to determine an
appropriate level of access by a particular user to certain data.
For example, a third-party developer may have their creden-
tials associated with a limited access level, so that when they
request reports on bugs with their applications, personal
information is filtered out so as to maintain anonymity for the
users of the applications. In contrast, inside users may have
greater access to data about faults on the user devices.

Finally, an apps data store 226 stores applications that are
made available to the users 210, including apps that have been
uploaded by the developers 212, and apps that may have been
placed on the marketplace initially by the operator of the
system 200.

Outside of the server system 202, a local developer 206 is
also shown in this example, and may be within the same
domain as the app server system 202, and communicate over
a private network 208 with the app server system 202. The
local developer is a programmer who is trusted by the app
server system 202 operator, such as an employee of the orga-
nization that runs the app server system. Such a user may be
identified by the app server system 202 in a variety of man-
ners, and the developer front end 216 may thus provide the
developer 206 with greater access to error data and access to
more powerful tools for analyzing the data. In other words,
the developer 206 may be treated by the system 200 as a
developer, but as being different than the other developers
212.

As one example, certain of the users 210 may have con-
sented to having certain personally identifiable data provided
to the organization that provided the app server system 202,
but may have declined to have such information shared with
third-parties. The local developer 206 would be able to access
more information in such a situation than would developers
212. Such a situation may be particularly desirable from the
viewpoint of the users 210, because frequently the local
developer 206 generates some of the most useful and univer-
sally deployed applications ina system (e.g., word processing
and electronic mail), and users may want to give such devel-
opers everything they need to improve the programs.

FIG. 3 is a flowchart of a process for managing software
problem reports. In general, the process involves receiving
computer code for various computer applications from devel-
opers of the applications, and making the applications avail-
able for download and perhaps for purchase by members of
the public at an application marketplace. After the various
applications are installed on various computers for registered
users of the system, the applications may begin to generate
alerts (e.g., when there is a crash or other problem), informa-

US 9,323,598 B2

11

tion about such alerts may be relayed back to the operator of
the application marketplace, and the information may be
made available to the corresponding developer who submit-
ted the particular applications that had the events, so that that
developer may improve and edit the code for his or her appli-
cations.

The process begins at box 302, where the process receives
an upload of applications by a developer. The developer may
be, for example, an individual programmer working out of his
home, who has written a simple application to solve a par-
ticular niche problem in a particular field, such as a calculator
for carpenters, a search tool for a particular profession, or
other similar applications that may be executed on a mobile
computing device. The developer may alternatively include a
group of individuals, such as a small software company that
makes its business out of developing applications such as
those sold on the application marketplace. Generally, the
developer is the party who has a rightful claim to revenue
generated by selling the application, or benefit derived from
otherwise distributing the application to various users.

At box 304, the application is made available on the mar-
ketplace. Such operation may occur in a familiar manner, and
may include the posting of an icon and a textual description of
the application, both of which will have been provided to the
marketplace by the developer. The application may be made
available for purchase for payment, or may be made available
for free download, which is also well-known in the art.

At box 306, instances of the application are delivered to
buyers who communicate an interest in receiving a copy of
the application. As a result, a copy of the application may be
downloaded to a mobile device associated with the user
account of the user who is accessing the application store or
marketplace. The user may then take appropriate actions to
install the application and to get it executing on their device,
either at the same time they purchased it, or at a later time or
times. Thus, the user of a device who has downloaded a
particular application, and other users who have downloaded
the application, may access the applications and interact with
it as they see fit.

Such interaction with the application may raise problem-
atic issues with the operation of the application. One such
issue includes a malfunction of the application that may lead
to a crash or a hang up of the application (or the process in
which the application is executing). Another issue may be a
dis-satisfaction with the application by the user, either
because the application is performing incorrectly or because
the user believes that the application could perform better
with certain improvements. In such a situation, a particular
client device for the user may gather data either automatically
from the device or manually from the user to characterize the
parameters of the event. The various data described above
may be gathered, in certain implementations, by a component
of the operating system or the application, and include infor-
mation like that discussed above, in addition to other data
such as a current screenshot of the device at the time of the
event, and also information that might be input to the device
by the user of the device, such as words indicating the sort of
feature that a user would like added to the application. Once
such diagnostic information has been gathered, it may be
transmitted from the client device to a server system, which
may then format and save the information about the alerts and
other alerts received from other client devices (box 310).

In performing such formatting and filtering, the central
server system may also identify common parameters between
data for different events in an effort to identify events that
represent the same bug occurring for an application. For
example, if trace information for two different events matches

20

25

30

40

45

55

12

very closely to each other, the system may infer that both
events were the result of a common bug. Certain parameters
for determining whether two events result from the same bug
may be weighted, while other parameters may be determina-
tive of whether the bug to which the event is classified relates
to a particular parameter. Each of such identified bugs may be
assigned an identification number that may be used subse-
quently to create a correlation between different alert data that
is determined to have a common bug, and to provide for group
recording of alerts and bugs to developers of software in the
system.

Atbox 312, the process formats and delivers, to a developer
of a particular application or applications, bug information
about their corresponding application or applications. As dis-
cussed above, a report may take a variety of forms, including
a printed report on the webpage, a block of data such as in
XML format, or a stream of data that involves a data trans-
mission every time an event is reported or a group of events
are reported to the process by various client devices that are
running an application. In this manner, a developer may
obtain, and a user and/or user’s device may provide, informa-
tion about bug-created events that occur on the user’s device.

FIG. 4 is a swim lane diagram of a process for managing
submissions of problems with software from multiple devel-
opers, where the software is installed across multiple mobile
computing devices. This process is similar to the process of
FIG. 3, but shows more detail about particular example opera-
tions that may be performed by particular components in a
system. The process begins at box 402, where a developer
develops a software application. Such development may
include architecting the application, drafting code for the
application and packaging and otherwise arranging portions
of'code for the application. Once the application is ready to be
used, the developer may register and login (box 404) to an
application store server system in a familiar manner, and the
server system may start an interactive session with the devel-
oper in this manner (box 406). After providing appropriate
forms of metadata regarding the application, such as a title for
the application, a price to be charged for the application, it is
textual description of the application, the icon for the appli-
cation to be presented on a user’s device and on applications
store, and other appropriate data, the user or developer may
upload their application or applications with the necessary
metadata (box 408).

Atbox 410, the applications store servers register the appli-
cation, create a space for storing it, along with the data that
describes parameters of the application, and host the applica-
tion in an available manner on the applications store.

At some later point in time, a user who is browsing the
applications store finds the application and wants to purchase
it. At box 414, the user registers and logs in with the applica-
tions store, which in turn starts a session with the user (box
416).

At box 418, the user supplies a command to download the
application, such as by clicking on an icon for the application,
and then selecting a particular on-screen selectable control to
confirm that the user wants to purchase and obtain the appli-
cation. At box 420, the application store checks the user’s
credentials to ensure that the user has an account with the
applications store, and then provides the application to the
user if the user does have such an account. Alternatively, the
servers may determine that the user does not have an account,
and may request such information from the user in a conven-
tional manner, including by requesting credit card informa-
tion from the user for paying for downloaded applications in
the future.

US 9,323,598 B2

13

Once the user has downloaded the application, they may
begin using it, and such use may, in certain circumstances,
generate an error or problem event, as shown at box 422.
Examples of error events are provided above, and may
include freezing of the device, crashing of the device, or
manual reports from a user regarding suggested improve-
ments or problems with an application. The user’s device then
reports such an event, along with diagnostic information for
the event, to a bug server at box 424, where the data may be
received and recorded. Such transmission from the client
device may occur via operating system components, by the
particular application suffering the event, or by a different
application that is resident on the device. The particular inter-
action between the device and the bug servers may be estab-
lished by an API standard, and may follow that standard so
that the data is transferred appropriately.

The process may then wait for a while, and other users may
execute applications on their devices, which may in turn
report data about problems on those devices. At some later
point, however, the developer may wish to see if the applica-
tion is operating properly, and may thus login (box 226) at the
end, though this time, he may be provided with information
from the bug servers, which may start a session at box 428.
One common interaction may include a request for one or
more reports (box 430) made by a computing device operated
by the developer, and the bug servers, at box 432, may serve
the requested report back to the developer. Such serving may
include organizing error events data according to particular
posts that have been identified by the bug servers, and filtering
data so that the developer receives only the data they need in
order to make an informed decision, and so they do not
receive data that they should not have access to. Finally, at box
434, the developer’s device displays the records or reports,
such as on a web page, so that the developer may review them
and may make decisions about whether and how to update
their software in order to address errors that may have been
occurring on one or more devices.

FIGS. 5A and 5B are example screen shots of a mobile
computing device experiencing operational problems with a
software application. In general, these screenshots show two
examples of screens that may be generated on a client device,
such as by an operating system component or by an applica-
tion, when an error event occurs. The screen shot in FIG. 5A
shows a warning screen that has been generated because a
particular process has stopped unexpectedly. The screen shot
instructs the user about what has happened, and then gives the
user two options for responding. In particular, the user can
select “force close” to shut down the process, and by exten-
sion shut down the application, with the understanding that
they could lose data doing so. The user may also select to
report information about the problem, where the user is open-
minded and wishes to help the developer of the application or
the operating system improve the software so that similar
unexpected stoppages do not occur in the future.

The user’s selection of the “report” option causes the
screen shot of FIG. 5B to be displayed. Here, the user is
shown parameters that control how the problem will be
reported to a central server system. In particular, the appro-
priate privacy policy to be applied to the transmission may be
displayed for the user’s review, and the user may be provided
with appropriate controls for correcting or updating the pri-
vacy policy. In addition, the user is presented with an empty
text box where he or she can optional describe the context of
the problem—e.g., “I was typing xyz into the abc application,
while simultaneously talking on the phone, converting a
video with Handbrake, doing number-crunching for SETI,
and playing a full res first person shooter, when for no good

10

15

20

25

30

35

40

45

50

55

60

65

14

reason, the application hung up on me”. Such text may be
passed as a field with other diagnostic information about the
problem. In certain circumstances, a user could be given the
opportunity to have their contact information provided to the
developer in case the bug is particularly thorny and the devel-
oper needs to email or call the user. Alternatively, the user
may not be asked initially to provide any contact information,
but the developer, upon reviewing the comment, could place
a request for contact information, and the system would then
generate a message that thew user could respond to.

The user may then select the “preview” button to be given
aview of all the data that will be uploaded about the problem,
or “send” to cause such upload of the information.

FIGS. 6A-6C are example screen shots of developer
reports generated by a software tracking system. FIG. 6A
shows summary statistics about bugs for the application
com.android.launcher2. For example, the total number of
reports or submissions from client devices is show, as is the
current rate of submissions—both for freezes and crashes.

In another instance, information about device battery
power and usage may be reported with information about
executing applications. For example, if a battery falls in
power suddenly, diagnostic information may be uploaded
from the device so that a central researcher can determine the
source of the electoral demand. For example, if a particular
application is frequently shown as being active whenever
such events occur, a central system might infer that that appli-
cation is the source of the battery drain.

FIG. 6B is a similar summary report, though for a number
of different applications or code files. For example, the name
of'the code is shown along with its context when it failed, the
number of reports for such failing, and current rate of such
events.

FIG. 6C shows a more detailed report about a particular
failure of a particular application, and shows much more
information about the context of the failure. For example, the
stack traces for the device are shown in the report, as is certain
other helpful information. Some of the information may be
hyperlinked so that a user may see additional source data for
what is displayed here.

FIG. 7 shows an example of a generic computer device 700
and a generic mobile computer device 750, which may be
used with the techniques described here. Computing device
700 is intended to represent various forms of digital comput-
ers, such as laptops, desktops, workstations, personal digital
assistants, servers, blade servers, mainframes, and other
appropriate computers. Computing device 750 is intended to
represent various forms of mobile devices, such as personal
digital assistants, cellular telephones, smartphones, and other
similar computing devices. The components shown here,
their connections and relationships, and their functions, are
meant to be exemplary only, and are not meant to limit imple-
mentations of the inventions described and/or claimed in this
document.

Computing device 700 includes a processor 702, memory
704, a storage device 706, a high-speed interface 708 con-
necting to memory 704 and high-speed expansion ports 710,
and a low speed interface 712 connecting to low speed bus
714 and storage device 706. Each of the components 702,
704,706,708, 710, and 712, are interconnected using various
busses, and may be mounted on a common motherboard or in
other manners as appropriate. The processor 702 can process
instructions for execution within the computing device 700,
including instructions stored in the memory 704 or on the
storage device 706 to display graphical information for a GUI
on an external input/output device, such as display 716
coupled to high speed interface 708. In other implementa-

US 9,323,598 B2

15

tions, multiple processors and/or multiple buses may be used,
as appropriate, along with multiple memories and types of
memory. Also, multiple computing devices 700 may be con-
nected, with each device providing portions of the necessary
operations (e.g., as a server bank, a group of blade servers, or
a multi-processor system).

The memory 704 stores information within the computing
device 700. In one implementation, the memory 704 is a
volatile memory unit or units. In another implementation, the
memory 704 is a non-volatile memory unit or units. The
memory 704 may also be another form of computer-readable
medium, such as a magnetic or optical disk.

The storage device 706 is capable of providing mass stor-
age for the computing device 700. In one implementation, the
storage device 706 may be or contain a computer-readable
medium, such as a floppy disk device, a hard disk device, an
optical disk device, or a tape device, a flash memory or other
similar solid state memory device, or an array of devices,
including devices in a storage area network or other configu-
rations. A computer program product can be tangibly embod-
ied in an information carrier. The computer program product
may also contain instructions that, when executed, perform
one or more methods, such as those described above. The
information carrier is a computer- or machine-readable
medium, such as the memory 704, the storage device 706,
memory on processor 702, or a propagated signal.

The high speed controller 708 manages bandwidth-inten-
sive operations for the computing device 700, while the low
speed controller 712 manages lower bandwidth-intensive
operations. Such allocation of functions is exemplary only. In
one implementation, the high-speed controller 708 is coupled
to memory 704, display 716 (e.g., through a graphics proces-
sor or accelerator), and to high-speed expansion ports 710,
which may accept various expansion cards (not shown). In the
implementation, low-speed controller 712 is coupled to stor-
age device 706 and low-speed expansion port 714. The low-
speed expansion port, which may include various communi-
cation ports (e.g., USB, Bluetooth, Ethernet, wireless
Ethernet) may be coupled to one or more input/output
devices, such as a keyboard, a pointing device, a scanner, or a
networking device such as a switch or router, e.g., through a
network adapter.

The computing device 700 may be implemented in a num-
ber of different forms, as shown in the figure. For example, it
may be implemented as a standard server 720, or multiple
times in a group of such servers. It may also be implemented
as part of a rack server system 724. In addition, it may be
implemented in a personal computer such as a laptop com-
puter 722. Alternatively, components from computing device
700 may be combined with other components in a mobile
device (not shown), such as device 750. Each of such devices
may contain one or more of computing device 700, 750, and
an entire system may be made up of multiple computing
devices 700, 750 communicating with each other.

Computing device 750 includes a processor 752, memory
764, an input/output device such as a display 754, a commu-
nication interface 766, and a transceiver 768, among other
components. The device 750 may also be provided with a
storage device, such as a microdrive or other device, to pro-
vide additional storage. Each of the components 750, 752,
764, 754, 766, and 768, are interconnected using various
buses, and several of the components may be mounted on a
common motherboard or in other manners as appropriate.

The processor 752 can execute instructions within the com-
puting device 750, including instructions stored in the
memory 764. The processor may be implemented as a chipset
of chips that include separate and multiple analog and digital

40

45

50

55

16

processors. The processor may provide, for example, for
coordination of the other components of the device 750, such
as control of user interfaces, applications run by device 750,
and wireless communication by device 750.

Processor 752 may communicate with a user through con-
trol interface 758 and display interface 756 coupled to a
display 754. The display 754 may be, for example, a TFT
LCD (Thin-Film-Transistor Liquid Crystal Display) or an
OLED (Organic Light Emitting Diode) display, or other
appropriate display technology. The display interface 756
may comprise appropriate circuitry for driving the display
754 to present graphical and other information to a user. The
control interface 758 may receive commands from a user and
convert them for submission to the processor 752. In addition,
an external interface 762 may be provide in communication
with processor 752, so as to enable near area communication
of'device 750 with other devices. External interface 762 may
provide, for example, for wired communication in some
implementations, or for wireless communication in other
implementations, and multiple interfaces may also be used.

The memory 764 stores information within the computing
device 750. The memory 764 can be implemented as one or
more of a computer-readable medium or media, a volatile
memory unit or units, or a non-volatile memory unit or units.
Expansion memory 774 may also be provided and connected
to device 750 through expansion interface 772, which may
include, for example, a SIMM (Single In LLine Memory Mod-
ule) card interface. Such expansion memory 774 may provide
extra storage space for device 750, or may also store applica-
tions or other information for device 750. Specifically, expan-
sion memory 774 may include instructions to carry out or
supplement the processes described above, and may include
secure information also. Thus, for example, expansion
memory 774 may be provide as a security module for device
750, and may be programmed with instructions that permit
secure use of device 750. In addition, secure applications may
be provided via the SIMM cards, along with additional infor-
mation, such as placing identifying information on the SIMM
card in a non-hackable manner.

The memory may include, for example, flash memory and/
or NVRAM memory, as discussed below. In one implemen-
tation, a computer program product is tangibly embodied in
an information carrier. The computer program product con-
tains instructions that, when executed, perform one or more
methods, such as those described above. The information
carrier is a computer- or machine-readable medium, such as
the memory 764, expansion memory 774, memory on pro-
cessor 752, or a propagated signal that may be received, for
example, over transceiver 768 or external interface 762.

Device 750 may communicate wirelessly through commu-
nication interface 766, which may include digital signal pro-
cessing circuitry where necessary. Communication interface
766 may provide for communications under various modes or
protocols, such as GSM voice calls, SMS, EMS, or MMS
messaging, CDMA, TDMA, PDC, WCDMA, CDMA2000,
or GPRS, among others. Such communication may occur, for
example, through radio-frequency transceiver 768. In addi-
tion, short-range communication may occur, such as using a
Bluetooth, WiFi, or other such transceiver (not shown). In
addition, GPS (Global Positioning System) receiver module
770 may provide additional navigation- and location-related
wireless data to device 750, which may be used as appropriate
by applications running on device 750.

Device 750 may also communicate audibly using audio
codec 760, which may receive spoken information from a
user and convert it to usable digital information. Audio codec
760 may likewise generate audible sound for a user, such as

US 9,323,598 B2

17

through a speaker, e.g., in ahandset of device 750. Such sound
may include sound from voice telephone calls, may include
recorded sound (e.g., voice messages, music files, etc.) and
may also include sound generated by applications operating
on device 750.

The computing device 750 may be implemented in a num-
ber of different forms, as shown in the figure. For example, it
may be implemented as a cellular telephone 780. It may also
be implemented as part of a smartphone 782, personal digital
assistant, or other similar mobile device.

Various implementations of the systems and techniques
described here can be realized in digital electronic circuitry,
integrated circuitry, specially designed ASICs (application
specific integrated circuits), computer hardware, firmware,
software, and/or combinations thereof. These various imple-
mentations can include implementation in one or more com-
puter programs that are executable and/or interpretable on a
programmable system including at least one programmable
processor, which may be special or general purpose, coupled
to receive data and instructions from, and to transmit data and
instructions to, a storage system, at least one input device, and
at least one output device.

These computer programs (also known as programs, soft-
ware, software applications or code) include machine instruc-
tions for a programmable processor, and can be implemented
in a high-level procedural and/or object-oriented program-
ming language, and/or in assembly/machine language. As
used herein, the terms “machine-readable medium” “com-
puter-readable medium” refers to any computer program
product, apparatus and/or device (e.g., magnetic discs, optical
disks, memory, Programmable Logic Devices (PLDs)) used
to provide machine instructions and/or data to a program-
mable processor, including a machine-readable medium that
receives machine instructions as a machine-readable signal.
The term “machine-readable signal” refers to any signal used
to provide machine instructions and/or data to a program-
mable processor.

To provide for interaction with a user, the systems and
techniques described here can be implemented on a computer
having a display device (e.g., a CRT (cathode ray tube) or
LCD (liquid crystal display) monitor) for displaying infor-
mation to the user and a keyboard and a pointing device (e.g.,
amouse or a trackball) by which the user can provide input to
the computer. Other kinds of devices can be used to provide
for interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback
(e.g., visual feedback, auditory feedback, or tactile feed-
back); and input from the user can be received in any form,
including acoustic, speech, or tactile input.

The systems and techniques described here can be imple-
mented in a computing system that includes a back end com-
ponent (e.g., as a data server), or that includes a middleware
component (e.g., an application server), or that includes a
front end component (e.g., a client computer having a graphi-
cal user interface or a Web browser through which a user can
interact with an implementation of the systems and tech-
niques described here), or any combination of such back end,
middleware, or front end components. The components of the
system can be interconnected by any form or medium of
digital data communication (e.g., a communication network).
Examples of communication networks include a local area
network (“LAN”), a wide area network (“WAN”), and the
Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer

10

40

45

65

18

programs running on the respective computers and having a
client-server relationship to each other.

A number of embodiments have been described. Neverthe-
less, it will be understood that various modifications may be
made without departing from the spirit and scope of the
invention. For example, much of this document has been
described with respect to a telephone dialing application, but
other forms of applications and keypad layouts may also be
addressed, such as keypads involving graphical icons and
macros, in addition to alphanumeric characters.

In addition, the logic flows depicted in the figures do not
require the particular order shown, or sequential order, to
achieve desirable results. In addition, other steps may be
provided, or steps may be eliminated, from the described
flows, and other components may be added to, or removed
from, the described systems. Accordingly, other embodi-
ments are within the scope of the following claims.

What is claimed is:

1. A computer-implemented method, comprising:

obtaining, at a computing system, information that identi-

fies a plurality of applications that are to be distributed to
user devices through an on-line application store oper-
ating on the computing system, the plurality of applica-
tions provided to the computing system by a plurality of
application developers;

receiving, at the computing system, requests from a plural-

ity of user devices to download particular ones of the
plurality of applications through the on-line application
store;

in response to receiving the requests from the plurality of

user devices to download the particular ones of the plu-
rality of applications through the on-line application
store, providing the particular ones of the plurality of
applications to corresponding ones of the plurality of
user devices that requested the particular ones of the
plurality of applications;

receiving, at the computing system, problem reports from

particular ones of the plurality of user devices, the prob-
lem reports indicating application bugs detected while
running applications distributed through the on-line
application store on the particular ones of the plurality of
user devices;

associating, by the computing system, a portion of the

received problem reports with a first application devel-
oper among the plurality of application developers based
on the portion of the received problem reports indicating
application bugs that were detected while running appli-
cations provided to the computing system by the first
application developer;

generating, by the computing system, a consolidated bug

report for the first application developer that character-
izes the portion of the received problem reports associ-
ated with the first application developer; and

providing the consolidated bug report to the first applica-

tion developer.

2. The computer-implemented method of claim 1, wherein:

the plurality of applications are finished releases of the

plurality of applications, and

the on-line application store is arranged to make accessible

the finished releases of the plurality of applications for
download and purchase by members of the public,
including by users that are not affiliated with the plural-
ity of application developers.

3. The computer-implemented method of claim 2, further
comprising:

receiving, at the computing system and in conjunction with

receiving a first of the requests from a first of the plural-

US 9,323,598 B2

19

ity of user devices to download a first of the particular
ones of the plurality of applications through the on-line
application store, authorization to charge a fee for the
first application to an account associated with the first of
the plurality of user devices that requested to download
the first application; and

in response to receiving the authorization to charge the fee

for the first application, causing, by the computing sys-
tem, the fee for the first application to be charged to the
account associated with the first of the plurality of user
devices.

4. The computer-implemented method of claim 1, wherein
the on-line application store is operated by an organization
that is separate and independent from the plurality of appli-
cation developers, wherein the requests received from the
plurality of user devices to download particular ones of the
plurality of applications through the on-line application store
are requests initiated by users that are separate and indepen-
dent from (i) the organization that operates the on-line appli-
cation store, and (ii) the plurality of application developers.

5. The computer-implemented method of claim 1, further
comprising:

associating, by the computing system, a second portion of

the received problem reports with a second application
developer among the plurality of application developers,
other than the first application developer, based on the
second portion of the received problem reports indicat-
ing application bugs that were detected while running
applications provided to the computing system by the
second application developer;

generating, by the computing system, a second consoli-

dated bug report for the second application developer
that characterizes the second portion of the received
problem reports associated with the second application
developer; and

providing the second consolidated bug report to the second

application developer.

6. The computer-implemented method of claim 1, wherein
the portion of the received problem reports associated with
the first application developer includes problem reports for a
particular application reported to the computing system by
multiple different user devices, wherein the consolidated bug
report for the first application developer characterizes the
problem reports for the particular application reported by the
multiple different user devices.

7. The computer-implemented method of claim 1, wherein
the portion of the received problem reports associated with
the first application developer includes problem reports for
multiple different applications developed by the first applica-
tion developer and distributed through the on-line application
store, wherein the consolidated bug report for the first appli-
cation developer characterizes the problem reports for the
multiple different applications developed by the first applica-
tion developer and distributed through the on-line application
store.

8. The computer-implemented method of claim 1, further
comprising providing the first application developer with
access to a graphical report generator, wherein the consoli-
dated bug report is provided to the first application developer
in a layout specified by a report template generated with the
graphical report generator.

9. The computer-implemented method of claim 1, wherein
generating, by the computing system, the consolidated bug
report for the first application developer comprises choosing
to exclude from the consolidated bug report information that

40

45

55

65

20

specifically identifies the user devices from which the prob-
lem reports characterized by the consolidated bug report
originated.

10. The computer-implemented method of claim 1,
wherein generating, by the computing system, the consoli-
dated bug report for the first application developer comprises
selecting one of a plurality of different levels of information
associated with the problem reports being characterized in the
consolidated bug report to include in the consolidated bug
report, the selection based on a level of trust associated with
the first application developer.

11. The computer-implemented method of claim 1, further
comprising:

analyzing, by the computing system, the problem reports

received from the particular ones of the plurality of user
devices;

identifying, by the computing system and based on the

analysis of the problem reports, related application bugs
encountered by different applications’ attempts to inter-
act with a common operating system used by multiple
ones of the plurality of user devices; and

determining, by the computing system and based on the

identified related application bugs, a problem with the
common operating system used by each of the multiple
ones of the plurality of user devices.

12. The computer-implemented method of claim 1,
wherein the consolidated bug report for the first application
developer is arranged to show, for each of one or more appli-
cations distributed through the on-line application store for
the first application developer, a frequency of occurrence of
problems associated with the application.

13. The computer-implemented method of claim 1,
wherein the consolidated bug report for the first application
developer is arranged to show, for each of one or more appli-
cations distributed through the on-line application store for
the first application developer, a list of application bugs for
the application sorted by type.

14. The computer-implemented method of claim 1,
wherein the consolidated bug report for the first application
developer is arranged to show representations of stack traces
onuser devices that indicate the respective statuses of the user
devices when application bugs were detected on the user
devices.

15. One or more non-transitory computer-readable media
having instructions stored thereon that, when executed by one
or more processors, cause performance of operations com-
prising:

obtaining, at a computing system, information that identi-

fies a plurality of applications that are to be distributed to
user devices through an on-line application store oper-
ating on the computing system, the plurality of applica-
tions provided to the computing system by a plurality of
application developers;

receiving, at the computing system, requests from a plural-

ity of user devices to download particular ones of the
plurality of applications through the on-line application
store;

in response to receiving the requests from the plurality of

user devices to download the particular ones of the plu-
rality of applications through the on-line application
store, providing the particular ones of the plurality of
applications to corresponding ones of the plurality of
user devices that requested the particular ones of the
plurality of applications;

receiving, at the computing system, problem reports from

particular ones of the plurality of user devices, the prob-
lem reports indicating application bugs detected while

US 9,323,598 B2

21

running applications distributed through the on-line
application store on the particular ones of the plurality of
user devices;

associating, by the computing system, a portion of the

received problem reports with a first application devel-
oper among the plurality of application developers based
on the portion of the received problem reports indicating
application bugs that were detected while running appli-
cations provided to the computing system by the first
application developer;

generating, by the computing system, a consolidated bug

report for the first application developer that character-
izes the portion of the received problem reports associ-
ated with the first application developer; and

providing the consolidated bug report to the first applica-

tion developer.

16. The one or more non-transitory computer-readable
media of claim 15, wherein:

the plurality of applications are finished releases of the

plurality of applications, and

the on-line application store is arranged to make accessible

the finished releases of the plurality of applications for
download and purchase by members of the public,
including by users that are not affiliated with the plural-
ity of application developers.

17. The one or more non-transitory computer-readable
media of claim 16, wherein the operations further comprise:

receiving, at the computing system and in conjunction with

receiving a first of the requests from a first of the plural-
ity of user devices to download a first of the particular
ones of the plurality of applications through the on-line
application store, authorization to charge a fee for the
first application to an account associated with the first of
the plurality of user devices that requested to download
the first application; and

in response to receiving the authorization to charge the fee

for the first application, causing, by the computing sys-
tem, the fee for the first application to be charged to the
account associated with the first of the plurality of user
devices.

18. The one or more non-transitory computer-readable
media of claim 15, wherein the on-line application store is
operated by an organization that is separate and independent
from the plurality of application developers, wherein the
requests received from the plurality of user devices to down-
load particular ones of the plurality of applications through
the on-line application store are requests initiated by users
that are separate and independent from (i) the organization
that operates the on-line application store, and (ii) the plural-
ity of application developers.

19. The one or more non-transitory computer-readable
media of claim 15, wherein the operations further comprise:

associating, by the computing system, a second portion of

the received problem reports with a second application
developer among the plurality of application developers,

10

20

25

35

40

45

50

22

other than the first application developer, based on the
second portion of the received problem reports indicat-
ing application bugs that were detected while running
applications provided to the computing system by the
second application developer;
generating, by the computing system, a second consoli-
dated bug report for the second application developer
that characterizes the second portion of the received
problem reports associated with the second application
developer; and
providing the second consolidated bug report to the second
application developer.
20. A computing system, comprising:
one or more computer processors; and
one or more computer-readable devices storing instruc-
tions that, when executed by the one or more computer
processors, cause performance of operations compris-
ing:
obtaining, at the computing system, information that
identifies a plurality of applications that are to be
distributed to user devices through an on-line appli-
cation store operating on the computing system, the
plurality of applications provided to the computing
system by a plurality of application developers;
receiving, at the computing system, requests from a
plurality of user devices to download particular ones
of the plurality of applications through the on-line
application store;
in response to receiving the requests from the plurality of
user devices to download the particular ones of the
plurality of applications through the on-line applica-
tion store, providing the particular ones of the plural-
ity of applications to corresponding ones of the plu-
rality of user devices that requested the particular ones
of the plurality of applications;
receiving, at the computing system, problem reports
from particular ones of the plurality of user devices,
the problem reports indicating application bugs
detected while running applications distributed
through the on-line application store on the particular
ones of the plurality of user devices;
associating, by the computing system, a portion of the
received problem reports with a first application
developer among the plurality of application develop-
ers based on the portion of the received problem
reports indicating application bugs that were detected
while running applications provided to the computing
system by the first application developer;
generating, by the computing system, a consolidated
bug report for the first application developer that char-
acterizes the portion of the received problem reports
associated with the first application developer; and
providing the consolidated bug report to the first appli-
cation developer.

#* #* #* #* #*

